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Introduction — dynamic networks
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Introduction

Overall trend:

e (Large-scale) interconnected dynamic systems

* Distributed / multi-agent type monitoring, control and optimization problems, as well
as diagnostics

* Datais “everywhere”, big data era, Al/machine learning tools
* Model-based operations require accurate/relevant models
* - Learning models/actions from data (including physical insights when available)
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Introduction

. . . : 1
The classical (multivariable) data-driven modeling problems[ ',

open loop closed loop v
vV
— G —>

Identify a model of GG on the basis of measured signals u, y
(and possibly ), focusing on continuous LTI dynamics.

In interconnected systems (networks) the structure / topology becomes
important to include

W Ljung (1999), S6derstrém and Stoica (1989), Pintelon and Schoukens (2012) TU/e



Network models

e scalable, describing the physics

e dynamic elements with cause-effect

* handling feedback loops (cycles)

e combining physical and cyber components
e centered around measured signals

* allow disturbances and probing signals
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Network models
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State space representation

x(k+1) = Axz(k)+ Bu(k)
y(k) = Cux(k)+ Du(k)

e States as nodes in a (directed) graph

 State transitions (1 step in time) reflected by a;;
* Transitions are encoded in links

e Ultimate break-down of system structure

* Actuation (u)and sensing (y) reflected by
separate links

For data-driven modeling problems:
 Lump unmeasured states in dynamic modules
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Network models
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State space representation [!

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,... TU/e
[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,...



Dynamic network models - zooming

Increasing level of
detail

Decreasing structural
information

TU/e



Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal
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Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal
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Dynamic network setup
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external excitation
v,. process noise
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Dynamic network setup
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Dynamic network setup

- module

external excitation
process noise
node signal
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Dynamic network setup

Basic building block:

wi(t) = Y GO (@wi(t) +r5(t) + v;(t)
kEN;
w;: node signal
r; : external excitation signal
v; : (unmeasured) disturbance, stationary stochastic process
ng: module, rational proper transfer function, N; C {Z N [1, L]\{j}}

q: shift operator, g~ tw(t) = w(t — 1)

Node signals: w1y, - - wp,
Interconnection structure / topology of the network is encoded in Aj, 7 = 1,--- L

J. Gongalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.
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Dynamic network setup

Collecting all equations:

0 0
w2 | _ | Gy 0 G2L w2 —|—R0 T2 —|—H0 €2
wry, GLl GL2 ces 0 wr, TK €p

—

Network matrix G°(q)

w(t) = GY(Quw(t) + R)(@)r(t) +o(t);  v(t) = H(q)e(t); cov(e) = A
u(t)

e Typically RV is just a (static) selection matrix, indicating which nodes have an excitation signal.

e The topology of the network is encoded in the structure (non-zero entries) of G°.

e 7 and e are called external signals.

J. Gongalves and S. Warnick, IEEE TAC, 2008. TU
PVdH et al., Automatica, 2013. e



Dynamic network setup

Many challenging data-driven modeling
and diagnostics challenges appear

* Identification of a local module
(known topology)
* Identification of the full network
* Topology estimation
e Identifiability
e Sensor and excitation allocation
Measured time series: * Diagnostics and fault detection
_ _ . _ ) e User prior knowledge of modules
twi)}iz1,Ls A7 }j=1,- K * Distributed identification
e Scalable algorithms

TU/e
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Application: Printed Circuit Board (PCB) Testing

Detection of

* component failures

* parasitic effects
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Single module identification

For a network with
known topology:

* |dentify G9, on the basis of
measured signals

* Which signals to measure?
Preference for local
measurements

* When is there enough
excitation / data informativity?

TU/e
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Single module identification

Local direct method:
(consistency and minimum variance properties)

Select a subnetwork:

* Predicted outputs: w,

* Predictorinputs: wp

such that prediction error minimization leads to
an accurate estimate of g9,

. {%_. = -_.wo} “

Wy — — Wy

Note: same node signals can appear in input and output

TU/e
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Single module identification

wD{w"_’ @-

Conditions for arriving at an accurate model:

1
2.
3
4

: : . A 0
Module invariance: G;; = G3;
Handling of confounding variables

Data-informativity

Technical condition on presence of delays

TU/e
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Single module identification - module invariance

A sufficient condition for module invariance:

All parallel paths, and loops around the output,
should be "blocked” by a measured node that is present in wj,

All other signals can be removed/immersed from the network

[1] Dankers et al., TAC 2016
[2] Shi et al., Automatica 2022
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Single module identification — confounding variables

Ve
Confounding variable [11[2]; @
Unmeasured signal that has (unmeasured paths) to both the i

input and output of an estimation problem.

In networks they can appear in two different ways:

e |f vdisturbances on inputs and outputs are correlated e
* If non-measured in-neighbors of wy, affect signals in wp #
Can be addressed by adding inputs/outputs to the predictor model®! ‘h

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009 [3] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017. TU/e
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Single module identification — data-informativity

Predictor model equation:

wy,(t) = G(g,0)w,(t) + H(q,0)&(t) + J(q, 0)uc(t) + Sup(t)

& &
Typical data-informativity condition:
K persistently exciting {<I>K,(w) > 0 for almost all w ] {_,} -

N =gea
wp(t)
k(t) := | &(1) inputs of the predictor model
urc(t) w

Rank-based condition can generically be satisfied based on a graph-based condition

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021. TU/e
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Data informativity (path-based condition)

This condition can be verified in a generic sense,
by considering the generic rank of the mapping
from external signals to « [1112]

linking to the maximum number of vertex disjoint paths

between inputs and outputs by = 3
C )
Kk persistently exciting holds generically if there are wp
vertex disjoint paths between external signals {u,e}and kK = | &
[ )
Equivalently:

dim(wp) vertex disjoint paths between {u, e}\{&,uc} and wp

[1] Van der Woude, 1991 [3] VdH et al., CDC 2020. TU/e

[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.



Data informativity (path-based condition)

Specific result for networks with full rank disturbances: *

[N
— | uy —L_ o

wpo Ly Lot w st
] g . Ay

Every node signal in wg requires an excitation in up
having a 1-transfer to wy

wy,(t) = G(g, 0)wo(t) + H(q,0)&(t) + J(q, 0)uc(t) + Sux(t)

* For every node in wgwe need a u-excitation

* More expensive experiments with growing # outputs

TU/e
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Single module identification

- {‘wu—> G‘ -—>wo} "

Conditions for arriving at an accurate model:

1
2.
3
4

. . L 0
Module invariance: G;; = G3; )
Handling of confounding variables

Data-informativity

Technical conditions on presence of delays J

Path-based conditions on the

network graph

TU/e
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Algorithms implemented in SYSDYNET Toolbox

4 TU/e Dynamic Network App
File Actions View Highlight Edit Operations Identifiability Predictor Model Help

M ale Y
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Dynamic Network: Editor
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Summary single module identification

e Path-based conditions that the predictor model should satisfy

e Different algorithms for synthesizing predictor model

* Degrees of freedom in sensor / actuator placement

* Methods for consistent and minimum variance module estimation, and
effective (scalable) algorithms

TU/e
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Related topics...

e Excitation allocation for full e Diffusively coupled networks
network identifiability

e Distributed controller identification

5%
U@'

e Subnetwork identifiability

o
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