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Introduction – dynamic networks 

Decentralized process control
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Complex machines

Smart power grid

Hydrocarbon reservoirs

Pierre et al.  (2012)

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)
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Overall trend:

• (Large-scale) interconnected dynamic systems

• Distributed / multi-agent type monitoring, control and optimization problems, as well 
as diagnostics

• Data is “everywhere”, big data era, AI/machine learning tools

• Model-based operations require accurate/relevant models

• → Learning models/actions from data (including physical insights when available)



Introduction

The classical (multivariable) data-driven modeling problems
[1] 

:

Identify a model of      on the basis of measured signals 

(and possibly   ), focusing on continuous LTI dynamics.
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[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

In interconnected systems (networks) the structure / topology becomes 
important to include
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Network models

D. Materassi and M.V. Salapaka (2012)                      www.momo.cs.okayama-u.ac.jp                       E.A. Carara and F.G. Moraes (2008)                                       P.M.J. Van den Hof et al (2013)
J.C. Willems (2007) X.Cheng (2019)

R.N. Mantegna (1999)                                                     D. Koller and N. Friedman (2009)                             P.E. Paré et al (2013)                                                                           E. Yeung et al (2010)

• scalable, describing the physics
• dynamic elements with cause-effect
• handling feedback loops (cycles)
• combining physical and cyber components
• centered around measured signals
• allow disturbances and probing signals
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Network models

6

State space representation

• States as nodes in a (directed) graph

• State transitions (1 step in time) reflected by 

• Transitions are encoded in links

• Ultimate break-down of system structure

• Actuation       and sensing       reflected by 
separate links

For data-driven modeling problems:

• Lump unmeasured states in dynamic modules
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Network models
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State space representation [1]

Module representation [2]

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…

[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,… 
….



Dynamic network models - zooming
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Decreasing structural
information

Increasing level of 
detail



Dynamic network setup 
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module
ri external excitation
vi process noise
wi node signal
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Dynamic network setup 
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Basic building block:

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.



Dynamic network setup 
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Collecting all equations:

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.



Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Diagnostics and fault detection 
• User prior knowledge of modules
• Distributed identification
• Scalable algorithms

Measured time series:

Many challenging data-driven modeling  
and diagnostics challenges appear



Application: Printed Circuit Board (PCB) Testing
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Source: Altium

Detection of

• component failures

• parasitic effects



Data-driven modeling in linear dynamic networks18

.

Single module identification



Single module identification
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For a network with 
known topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Single module identification
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Local direct method:
(consistency and minimum variance properties)

Select a subnetwork: 
• Predicted outputs: 
• Predictor inputs:
such that prediction error minimization leads to
an accurate estimate of 

Note: same node signals can appear in input and output



Single module identification
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Conditions for arriving at an accurate model:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity

4. Technical condition on presence of delays
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[1] Dankers et al., TAC 2016
[2] Shi et al., Automatica 2022 

All parallel paths, and loops around the output, 
should be ”blocked” by a measured node that is present in 

Single module identification  - module invariance

A sufficient condition for module invariance:

All other signals can be removed/immersed from the network



Single module identification – confounding variables
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Confounding variable [1][2]: 

Unmeasured signal that has (unmeasured paths) to both the 
input and output of an estimation problem. 

In networks they can appear in two different ways:

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

Can be addressed by adding inputs/outputs to the predictor model[3]

• If non-measured in-neighbors of        affect signals in   

• If     disturbances on inputs and outputs are correlated

[3] K.R. Ramaswamy et al., IEEE-TAC, 2021.



Single module identification – data-informativity
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Predictor model equation:

Typical data-informativity condition: 

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.

for almost all

inputs of the predictor model 

Rank-based condition can generically be satisfied based on a graph-based condition



Data informativity (path-based condition)
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This condition can be verified in a generic sense,  
by considering the generic rank of the mapping 
from external signals to     [1],[2] 

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

linking to the maximum number of vertex disjoint paths
between inputs and outputs 

persistently exciting holds generically if there are 
vertex disjoint paths between external signals            and                                     

[3] VdH et al., CDC 2020.

Equivalently:  
vertex disjoint paths between                             and  



Every node signal in       requires an excitation in
having a 1-transfer to  

Data informativity (path-based condition)
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Specific result for networks with full rank disturbances: 

• For every node in       we need a u-excitation

• More expensive experiments with growing # outputs



Single module identification
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Conditions for arriving at an accurate model:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity

4. Technical conditions on presence of delays

Path-based conditions on the 
network graph 



Algorithms implemented in SYSDYNET Toolbox
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Summary single module identification

• Path-based conditions that the predictor model should satisfy

• Different algorithms for synthesizing predictor model

• Degrees of freedom in sensor / actuator placement

• Methods for consistent and minimum variance module estimation, and
effective (scalable) algorithms
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Related topics… 

• Excitation allocation for full 
network identifiability
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r1 r2

r3 r4

• Diffusively coupled networks

• Subnetwork identifiability
• Distributed controller identification



ERC SYSDYNET Team: data-driven modeling in dynamic networks
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The end


